
J .  Fluid Mech. (1974), vol. 65, part 3, pp.  581-601 

Printed in Great Bri ta in  
581 

One-dimensional shock turbulence in a 
compressible fluid 

By TOMOMASA TATSUMI 
Department of Physics, Faculty of Science, University of Kyoto, Japan 

AND HIROSHI TOKUNAGA 
Department of Mechanical Engineering, Faculty of Industrial Arts, 

Kyoto Technical University, Japan 

(Received 31 August 1973) 

The interactions of weak nonlinear disturbances in a compressible fluid including 
shocks, expansion waves and contact surfaces are investigated by making use 
of the reductive perturbation method. It is found that the nonlinear waves 
belonging to different families of characteristics behave almost independently 
of each other, while those belonging t o  the same family are governed by either 
the Burgers equation or the equation of heat conduction. Thus the statistical 
properties of one-dimensional shock turbulence in a compressible fluid are 
reduced to those of the solutions of the Burgers equation. I n  particular, the law 
of energy decay of shock turbulence is shown to be identical to that of Burgers 
turbulence. 

1. Introduction 
Turbulence in an incompressible fluid is composed of random shear motions 

and its velocity field, when Fourier analysed, has only transverse components 
in the wavenumber vector. I n  a compressible fluid, on the other hand, the 
density fluctuates together with the velocity and the pressure; and the turbulent 
field includes longitudinal components as well, which, unlike the transverse 
components, propagate in all directions as sound waves. The transverse com- 
ponents are well known as shear turbulence, and the longitudinal components 
may be called compression turbulence. 

In  a compressible fluid shear turbulence always causes density fluctuation or 
compression turbulence; and conversely the interaction of compression waves 
produces vorticity fluctuation or shear turbulence. At small values of the Mach 
number M = U,/ao (U, being the characteristic velocity of turbulence, and a, 
the sound velocity of undisturbed fluid), turbulence is usually excited by the 
instability of laminar flows; therefore the energy is supplied primarily to shear 
turbulence, then transferred to compression turbulence. The situation is dif- 
ferent for large values of M ;  for example, in the interstellar gas, the random 
heating of the gas by stars gives rise to compression turbulence, and shear 
turbulence is produced secondarily (see Burgers 19553). Thus, in turbulence in 
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a compressible fluid, there is continual exchange of energy between the longi- 
tudinal and transverse components of turbulence; and in equilibrium we may 
expect an equipartition of energy between these two Components of turbulence. 

The spectral representation of homogeneous turbulence in a compressible 
fluid was first studied by Moyal (1952). It was shown that, for turbulence a t  
small M ,  the dynamical equations break up into two distinct groups, one re- 
ferring to the transverse velocity spectrum, the other to the longitudinal 
spectra, including the longitudinal velocity components, the density and the 
temperature. While the spectra belonging to the latter group are strongly coupled 
to each other by the linear terms of the equations, the interaction between the 
two groups is exclusively due to the nonlinear terms, and thus becomes small at 
small values of M .  

The properties of sound generated by shear turbulence of a given character 
were investigated by Lighthill (1952, 1954)) who showed that the total acoustic 
power output is roughly proportional to the eighth power of U, for shear 
turbulence, and that the efficiency of conversion of energy from shear to com- 
pression turbulence is proportional to the fifth power of M for shear turbulence. 

The foregoing analyses show conclusively that the interaction between the 
transverse and longitudinal components of turbulence is very weak a t  small M .  
On the other hand, the structure of the compression turbulence itself is much 
more sensitive to M .  So long as M is infinitesimally small, the compression 
turbulence takes the form of a random assembly of ordinary sound waves. At &f 
of finite magnitude comparable with 1 and even larger, however, the compression 
sides of sound waves rapidly steepen and become shock fronts, while the ex- 
pansion sides become less and less steep; thus sound waves develop into trains 
of triangular shock waves or ' N-waves '. At this stage, the compression turbulence 
may be imagined as a random assembly of shock waves of all shapes, rushing 
about in all directions, with regions of gradual expansion between them (see 
Lighthill 1955). 

In  this stage of turbulence, the viscous dissipation takes place almost entirely 
inside the shock fronts where the velocity gradient is extremely large, and the 
decay of kinetic energy is largely accelerated by the presence of shock waves. 
Another important feature of this shock turbulence is the coalescence of shock 
fronts, which occurs whenever a shock front is overtaken by another. It is linown 
that the coalescence has the effect of delaying the decay of turbulent energy (see 
Tatsumi & Kida 1972). Thus the statistical properties of shock turbulence may 
be expected to be substantially different from those of random sound waves a t  
infinitesimal Mach numbers. 

We shall investigate in the present paper the statistical mechanics of com- 
pression turbulence in isolation, taking one-dimensional motions as the im- 
mediate subject of study. The properties of one-dimensional nonlinear waves in 
a compressible fluid have been investigated for many years by several authors; 
now the individual behaviour of shock waves, expansion waves and contact 
surfaces, and various types of interaction between them, seem to have become 
familiar (see e.g. Courant & Friedrichs 1948). To deal with one-dimensional 
compression turbulence, or a random assembly of the above nonlinear waves, 
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however, it is necessary to know the laws of the interactions more systematically, 
and, if possible, to deduce simple features of them, so as to make statistical 
treatment easier. 

The interactions between weak shock waves and expansion waves were dis- 
cussed by Burgers (1955a), using a modified Burgers equation and the equation 
of continuity, and some simple relations of weak nonlinear waves were obtained. 
In  the present paper, we shall deal with a set of exact equations governing one- 
dimensional motions in a compressible fluid, and derive all the information about 
the weak nonlinear waves and their interactions, by applying a small parameter 
expansion to the above set of equations. 

In  $ 2  various types of interaction between three elementary modes of dis- 
turbance in a compressible fluid (namely shock waves, expansion waves and 
contact surfaces) are surveyed in brief; and the interactions are examined in 
more detail for the case of weak disturbances. 

I n  3 the interactions of weak nonlinear waves in a compressible, viscous and 
heat-conducting fluid are investigated in general, by making use of the reductive 
perturbation method developed by Taniuti & Wei (1968), and the procedure 
employed by Oikawa & Yajima (1973) for dealing with similar problems. It 
is shown that the nonlinear waves which belong to different families of charac- 
teristics behave almost independently of each other, and are governed separately 
by either the Burgers equation or the equation of heat conduction. 

As examples of the analysis in $3,  the interactions of shocks and expansion 
waves are dealt with in $ 4. I n  the case of head-on collision, a pair of the waves 
penetrate each other, suffering no change in their strengths, the only effect of 
collision being a change in the phase velocity of each wave by an amount propor- 
tional to the strength of the other wave. In  the case of the overtaking of one 
wave by another, on the other hand, the behaviour of the waves is completely 
governed by the Burgers equation; and the coalescence of shocks and expansion 
waves follows as a property of solutions of the Burgers equation. 

As an important corollary of the results of $ 3, it follows that the asymptotic 
form of a weak nonlinear disturbance of an arbitrary initial form for very large 
Reynolds numbers and time is expressed as the sum of the asymptotic forms of 
solutions of the Burgers equation. It is shown in $ 5 that the statistical properties 
of weak shock turbulence in a compressible fluid are in fact reducible to those of 
Burgers turbulence, which was already dealt with by Tatsumi & Kida (1972). 
I n  particular, the law of decay of turbulent energy is shown to be identical to 
that of Burgers turbulence. 

2. Interaction of shocks, expansion waves and contact surfaces 
The dynamical disturbances that take place in a uniform compressible fluid 

consist of three elementary modes: shock waves, expansion waves and contact 
surfaces. These waves, obeying nonlinear equations, interact with each other in 
various manners (Courant & Priedrichs 1948). Amongst all possible interactions 
of these waves, some typical ones are shown graphically in figure 1 (where x 
denotes the co-ordinate and t the time, and thick solid lines represent shock waves, 
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FIGURE 1. Interaction of shocks and expansion waves: -, shocks; 

-, expansion waves; - - - , contact surfaces. 

thin solid lines expansion waves and broken lines contact surfaces). Shock 
waves and expansion waves are classified into two groups: forward-facing waves, 
which propagate in the direction of increasing x relative to the upstream fluid, 
and backward-facing waves, propagating oppositely. Let us denote the forward- 
facing shocks and expansion waves by 9, and %,, the backward-facing shocks 
and expansion waves by 9’- and Z-, respectively. 

Figures 1 (a)-(c) show the head-on collision of two oppositely facing waves, 
a pair of shocks 9, and Y-, a shock Y+ and an expansion wave 3-, and a pair 
of expansion waves X, and %-, respectively, whereas figure l ( d )  shows the 
overtaking of a shock 9’’ by another similarly facing shock Y+. As may be 
observed from these figures, the interactions between shocks and expansion 
waves generally produce a contact surface %, in addition to new shocks and 
expansion waves. Thus, to describe the disturbances in a compressible fluid in 
general, all three of the elementary nonlinear waves are required. 

The situation is considerably simplified if we restrict ourselves to the case 
where all nonlinear waves have finite but small amplitudes. For instance, let 
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us examine the head-on collision of two shocks. Before the shocks meet, we 
have three regions, say 1, 0 and 2,  in the order from left to right (see figure 1 (a) ) ;  
after collision, there appear in general two new regions between the regions 1 
and 2, say 3 and 4, which are separated by a contact surface. 

The density p ,  the pressure p ,  the fluid velocity u and other variables in the 
region, i say, ahead of a shock and the region, j say, behind the shock, are con- 
nected to each other by the laws of conservation of mass, momentum and energy: 

where U denotes the pha,se velocity of the shock, E the internal energy of fluid 
per unit mass, and suffixes refer to the numbers of the regions. The fluid is 
assumed to be an ideal polytropic gas with the equation of state 

p = B?pT, 92 = c ~ - c ~ ,  
and internal energy 

where T is the temperature, B? the gas constant, cp and cv the specific heats at 
constant pressure and constant volume respectively. Manipulation of ( 2 .  l ) ,  (2 .2 )  
and (2.3) gives the shock relations 

where plus and minus signs apply for the forward- and backward-facing shocks, 
respectively, and 

I a;-at u = $(Ui+Uj)+-- - 
y - 1  uj-ui7 

where a = (7PlP)B = ( y 2 V  (2.7) 

denotes the local sound velocity. 

definition that 
Since the regions 3 and 4 are separated by a contact surface, it follows by 

P3 = P4, u3 = u4. (2.8) 

If the shock waves are of small amplitude, 

PjlPi = 1 +Pip (2.9) 

and welmay neglect terms 0(Ipi j l2) .  Then, substitution of (2.4) and (2.9) into 
(2 .5 )  gives 

PP? = PO13 P13 = p02, (2.10) 
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which shows that, in the weak-shock approximation, the shocks pass through 
each other, suffering no change in their strengths. 

Next, applying the same approximation to (2.4), we obtain 

and hence 

P j  = l+-pij, 1 

Y P i  
(2.11) 

(2.12) 

thanks to (2.10), so that no contact surface exists between regions 3 and 4. 
Thus, in the weak-shock approximation, the head-on collision of shocks pro- 
duces only another pair of shocks of unchanged strengths, as depicted in 
figure 2 (a).  

For weak shocks, it  follows from (2.5) that 

(2.13) 

and, from (2.9) and (2.11), it follows that 

= +&(y-l)(uj-ui). (2.14) 

Substitution of (2.14) into (2.6) immediately gives 

U = +(ui 5 ai + uj k aj ) ,  (2.15) 

so that the phase velocity U of a weak shock is given by the average of the 
velocities of the sound waves ui 5 ai ahead of the shock front, and uj +_ aj behind it. 

Thus, the velocities of the shocks 9+ and 9- in figure 2(a) are expressed as 
follows (where the region 0 has been taken to be in undisturbed state uo = 0). 
Before collision, 

(2.16) 

(2.17) 
After collision, 

where the relations (2.8), (2.10), (2.13) and (2.14) have been taken into account. 
The other types of interaction corresponding to figures 1(b)-(d) are also 

simplified when the waves have finite but small amplitudes. The simplified 
patterns of interaction are shown graphically in figures 2 (b)-(a), from which it 
may be observed that no contact surface arises from interactions. 

It may be seen, in figure 2, that there is a substantial difference between the 
consequences of the head-on collision of two oppositely-facing waves, and those 
of the overtaking of two like-facing waves. I n  case of head-on collision 
(figures 2 (a)-(c)), the two waves inter-penetrate, their strengths remaining un- 
changed. In  overtaking (figures 2(d)), on the other hand, two shocks coalesce 
to make a single shock. Similarly, it may be shown that the overtaking of a shock 
or an expansion wave by another expansion wave or a shock, respectively, pro- 

I U+ = ao+t(y+ l ) u l + + ( 3 -  y)uz,  
u- = - a , + ~ ( y + l ) u 2 + ~ ( 3 - y ) u 1 ,  
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FIGURE 2 .  Interaction of weak shocks and expansion waves: -, shocks; 
--, expansion waves. 

duces either a single shock or an expansion wave, depending on the relative 
strengths of the original waves. The strength of the resulting wave is found to 
be equal to the difference of the strengths of the original waves. 

All the results described above concerning the interactions of weak nonlinear 
waves in a compressible fluid have been derived by rather heuristic arguments, 
(i) assuming that the disturbance fields are composed of shocks, expansion waves 
and contact surfaces, connected by regions of constant state, and (ii) neglecting 
the inner structure of shocks and contact surfaces. These results, however, can 
be obtained more systematically and rigorously by solving the fundamental 
equations of a compressible fluid under proper approximations corresponding to 
weak nonlinear disturbances. It will be shown in § 3 that a reductive perturba- 
tion method applied to the equations of conservation of mass, momentum and 
energy and the equation of state of a compressible fluid leads to more definite 
results than those described in this section. 
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3. Nonlinear waves in a compressible, viscous and heat-conducting fluid 
One-dimensional motions in a compressible fluid with finite viscosity and 

thermal conductivity are governed by the following equations, representing the 
conservation of mass, momentum and energy: 

with 

Dp au 
-+p- = 0, 
Dt ax 

D a  8 
Dt - 
_ -  

where and cdenote the shear and bulk viscosities respectively and k the thermal 
conductivity. 

To make the above system of equations more tractable, we introduce some 
simplifying assumptions (following Lighthill 1956). First, all the transport co- 
efficients are assumed to be constant in space; and their ratios to the density, 
v / p ,  c/p and k/p, are replaced by the corresponding values 70/po, <o/po and ko/po 
in the undisturbed state. Next, the viscous dissipation ($7 + 5)  (au/ax)2 in (3.1) 
is neglected. Concerning the nature and the validity of these approximations, 
reference may be made to Lighthill (1956). 

Then, eliminatingp and E from (3.1), (2.2) and (2.3), and applying the above 
approximations, we have the following equations for p ,  u and T :  

where 

z + u - + p -  ap au = 0,  
ax ax 1 

= 0,  1 au au T a p  aT a Z u  
-+u -+w--+w-- 8, 
at ax p a x  ax 

(3.3) 

For later convenience, all the variables are made non-dimensional, using a 
representative length scale L, density po,  temperature To and sound velocity 
a, = (ypo/po)* = (@?To)& in the undisturbed fluid: 

(3.4) 

Then (3.2) may be written in non-dimensional form as 

aw aw a2w 
-+A(W)--;-K-- at! ax aX’2  = 0, (3.5) 
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where 

0 0 0  

K = ( o  ; ;), 1 
0 0 -  

R2 

and R, = aoL/S, and R2 = a0L/6, are non-dimensional numbers similar to the 
usual Reynolds number. 

A singular perturbation method for solving a wide class of nonlinear partial 
differential equations was presented by Taniuti & Wei (1968). This method 
enables us to  express each quasi-simple wave solution of the equations, which 
propagates along a family of characteristics, as the solution of a single nonlinear 
equation reduced from the original equations. Using this method, Oikawa & 
Yajinia (1973) dealt with the interaction of solitary waves belonging to diEerent 
families of characteristics, and calculated the phase shifts of the two solitary 
waves due to collision in the cases of ion-acoustic waves in a collisionless plasma 
and shallow-water waves. The same method can be applied to the present problem, 
in which, however, the interaction of nonlinear waves will cause changes in the 
phase velocities, rather than mere phase shifts. I n  the following, we shall in- 
vestigate the interaction of weak nonlinear waves in a compressible fluid governed 
by (3.5), using this reductive perturbation method. 

I n  the unperturbed state, W and A of (3.6) are written as 

The eigenvalues r of A(O) defined by the roots of 

IA(O)-rlJ = 0, 

I being the unit matrix, are found to be all real and distinct : 

rl = I, r2 = -1 ,  r3 = 0. (3.8) 

Now we expand W and A in powers of a smallness parameter E ,  which 
represents the order of magnitude of the amplitude of nonlinear waves: 

(3.9) 
W = W"+EW(1)+€2W(2)+ ..., 
A = A@) + EA(1) + SZA(2) + . . . , 
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I ti = €[X‘-YTjt’-$qX’, t ’ )] ,  j = I,  2 ,3 ,  
r = 8, (3.10) 

where the q5j are phase functions to be determined later. The transformation 
(3.10) has been suggested from the functional form of the well-known weak- 
shock solution (4.2), and also from the fact that weak shocks change their phase 
velocities after a head-on collision. It may be said that, with these specific 
expansions and stretching of variables, a consistent set of equations are obtained 
for examining the large-scale structure of nonlinear waves and their behaviour 
after a long time. Substituting the expansion (3.9) with (3.10) into ( 3 . 5 ) ,  and 
equating terms of the same powers of e to zero, we obtain a sequence of equations. 

At the lowest order we have 

(3.11) 

Denote the right and left eigenvectors of A(@ for the eigenvalue ri by Qi and e, 
respectively : 

(3.12) I A(0)Qi = riQi, PiA@) = ripi, 
(pi, Qj) = Sii, i,j = 1, 2 ,3 .  

Then, expanding W(l) in terms of Qi as 

= Cfi(El,52, k-3; 7) Qi, (3.13) 
i 

and substituting (3.13) into (3.11), we obtain 

(3.14) 

(3.1.5) 

and 7, where tii is the component vector of gj perpendicular to the vector (Ti - rj). 
Since, however, we are interested in quasi-simple waves which propagate dong 
a family of characteristics ti = const., we take f i  as a function of Cii = ti done: 

f i  = f&, 7).  

At the next order we have 
(3.16) 
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Then, expanding WO and A(l) in terms of Qi as 

1 W2) = C Si(t-1, E 2 ,  &; 7) Qa, 
i 

= Zfi(&, 7) “Qi * V,)A1(0), 
i 

and substituting (3.13) and (3.18) into (3.17), we obtain 

59 1 

(3.18) 

with 

where (3.16) has been taken into account. 
Now we require that the phase functions $i satisfy the equations 

the solutions of which are given immediately by 

(3.20) 

(3.21) 

where the Oi are arbitrary functions to be determined by the initial conditions. 
With the phase functions $i thus determined, the second sum of (3.19) vanishes, 
and then it may easily be seen that integration of (3.19) produces secular terms 
for gi, unless the terms Gi[f i ] ,  being constant in integration with respect to 
&, j + i, vanish identically. Thus it follows from (3.20) that 

(3.22) 

which give the reduced equations for f&, 7). 

as 
In  the present problem, the eigenvectors are given, from (3.7), (3.8) and (3.12), 

(3 .23a)  

(3.233) 

( 3 . 2 3 ~ )  
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and hence 

where 
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( 3 . 2 3 d )  

( 3 . 2 4 )  

Then, the reduced equations ( 3 . 2 2 )  are written as 

( 3 . 2 5 )  

aFi aFi 1 a2Fi 
a7 ati 2 p ~  at! 
- +Fi--- - = 0, i = 1 and 2, 

2 
fi = ( -  1)i-1- + 1 Fi(Ei> r ) ,  

af3 1 a z f ,  = 0, ( 3 . 2 6 )  

the first of which is called the Burgers equation, the last being the equation of 
heat conduction. The phase functions ( 3 . 2 1 )  are also written as 

a7 CTR at; 

I 1 7 - 3  5. 1 5 3  

$5 1 -  - _ - -  2 7 f 1  / F 2 ( f ) d c - 2 /  f3(c)dc+81, 

i 
l y - 3  51 

2 

Lastly, the first-order solution W(l) of ( 3 . 5 )  is obtained: 

(3.27) 

Thus, the nonlinear waves in a compressible fluid are expressed as Iinear com- 
binations of three quasi-simple waves, which are governed by the reduced 
equations ( 3 . 2 5 )  and ( 3 . 2 6 ) ,  and the interaction between them occurs only through 
the phase functions ( 3 . 2 7 ) .  
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4. Interaction of shocks and expansion waves 
Let us assume that, at  an initial instant, there are only shocks and expansion 

waves, and no contact surface, present. Then, since the solution f3 of (3.26), 
which was initially absent, must identically vanish, the expression (3.28) for 
the first-order disturbance is reduced to 

4.1. Head-on collision of two shocks 
The solution of (3.25), which represents a shock wave, was obtained by Burgers 
(1  950) : 

4 = q - &vi tanh ( $/3RviXi), X i  = Ci - KT, (4.2) 

where & (z 0 )  and vi ( > 0 )  are arbitrary constants. The expression (4.2) gives 
a negative step function connecting a constant region Fi = 6 + $vi to the left 
and another constant region Fj = & - Q v ~  to the right of the step, and moving 
with a constant velocity 5 along the & axis. Indeed, this solution (4.2) is nothing 
but the weak-shock solution first obtained by Taylor (1910). 

The phase functions corresponding to the solution (4.2) are obtained from 
(3.27): 

For extremely large Reynolds numbers R, (4.3) reduces to 

(4.4) 

For definiteness, let us take the case dealt with in $ 2  (see figure 2(a)), in 
which the fluid ahead of both shocks is in undisturbed state, so that 

where (3.9), (3.13), (3.25) and (4.2) have been taken into account. The paths of 
shocks Y+ and 9- are given by X, = 0 and X ,  = 0, respectively; and in this 
case X ,  and X ,  are expressed from (4.2) and (4.4) as follows. Before collision, 

4, = 0,  X ,  = s[x- (1 +sV,) t ]  for Y + ( X ,  -= O ) ,  
4, = 0, X ,  = e[x- ( -  1 +sV,) t ]  for 9- (X l  > 0) .  (4.6) 

F L M  65 38 
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After collision, 
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1 7 - 3  41 = ~ y V 2 € r 2 - ( - 1 + € V , ) t - 4 , l  

1 7 - 3  
= -- €V,(X + t )  + O(€Z), 

2 y + l  

XI = € [ x - ( l + € ~ ) t - $ l ]  

I y - 3  
2 y + l  

=-- €VI(2--t)+0(€2), 

(4 .7)  

I x, = €[X- ( - 1 +€&) t -  4,] 

= €  I--- 1 7 - 3 4  [ x - ( - l + € ~ - - Y - 3 € v 1 ) t ]  1 ( 2 Y f l  Y+l 
+ O ( @ )  for YL ( X ,  < 0).  I 

In view of (4.5), the phase velocities of Y+ and 9- before and after collisioli are 
in complete agreement with those given by (2.16) and (2.17). It may also be 
seen, from (4.6) and (4.7), that the collision has the effect of increasing the 
Reynolds number of shocks 9+ and 9- by the factors (1 + [+(3 - y )  ( y  + I)] E V ~ }  

and {I + [&(a - y )  ( y  + I)] q}, respectively. 
For illustrating the situation, the result of numerical calculation of the head-on 

collision of two shocks is shown graphically in figure 3 (a). 

4.2. Head-on collision of a shock and an  expansion wave 

Let us consider a forward-facing shock 9+, given by Fl of (4.2), and a backward- 
facing expansion wave %-, expressed by 

V,-&v, for X ,  < -+v2r, 
3, = + x2/T for - +v2T < x, < +v,,-,] (4.8) i Q++v2 for X ,  < +v2r. 

The expansion wave (4.8) occupies a length v2r of the E, axis, which increases 
with time, and connects a constant region V, - +v2 to the left and another constant 
region V, + &v, to the right. 

Obviously, the phase function $, is identical with that given by (4.3) or (4.4), 
whereas is derived from (3.27) : 

(V,- +v,) X ,  - for X 2  < - +v2r, 

(V, + &vz) X ,  - &v; for X ,  2 ~ v , T .  
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\ -0.4 
In  the special case of V, = 4v2, (4.9) becomes 

(4.10) 
for X, < -+v2r, 

for X, a &v2r, 
$ - -_ -  + Xg/r + for - &v2r Q X, < 42)27, 
l -  2 y + l  

where 8, has been chosen so as to make vanish at  X ,  < - &v,r. 

of the expansion wave T-, and eventually acquires an increment 
Thus the shock 9+ is continuously accelerated by passing through the region 

M 3  - rNr + 111 €212 

in the phnse velocity. The expansion wave %-, on the other hand, is decelerated 
38-2 
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FIGURE 3. ( a )  Head-on collision of two weak shocks. ( b )  Head-on collision of a weak 
shock and an expansion wave. -, density profiles (p-po)/p,,; - , velocity profiles 
u/a,,; - - -, loci of shock fronts. 

by the collision in the same manner as the shock 9- in Q 4.1. The situation is 
illustrated in figure 3 (b ) ,  which shows the result of numerical calculation of the 
head-on collision of a shock and an expansion wave. 

4.3. Overtaking of Eike-facing waves 

In  the case of interaction of shocks and expansion waves facing in the same 
direction the disturbance field is completely determined by (3.25); therefore 
the problem is reduced to the initial-value problem of the Burgers equation. 
It will be shown in Q 5 that the general solution of the Burgers equation started 
from an arbitrary initial condition tends, for very large Reynolds numbers 
R 9 1 and times 7 3 1, to a sequence of triangular shock waves, each consisting 
of a shock front followed by a simple expansion wave.? 

7 The formation of a series of triangular shock waves and the coalescence of successive 
shock fronts on overtaking were first pointed out by Burgers (1950) for the solution of the 
Burgers equation starting from a broken linear velocity profile and in the limit of infinite 
Reynolds number; later the proof was extended to the case of an arbitrary initial con- 
dition by Burgers (1954n-c, 1972, 1973). 
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The overtaking of one step shock by another can be dealt with as a limiting 
case of the general result, which will be given in 9 5; the corresponding solution 
is found to be expressed as follows. Before overtaking (r < 0) ,  

G1 - +vil tanh [Q/3Bvil(& - & T ) ]  for & < 0, 
C2 - h2 tanh [ W v i 2 ( &  - G7)I for ti > 0, 

(4.11) I Fi(t07) = [ 
where Q1 - Qvil = K2 + 4vi2. After overtaking (r > 0 ) ,  

J x i ,  7) = (%I + C2) - &+ %2) tanh {W(., + W i 2 )  [ti- (El + %2) .I>. (4.12) 

Thus, unlike the head-on collision, the overtaking of one shock by another makes 
the two coalesce, to form a single shock with strength (vil+vi2) and phase- 
velocity (Kl + K2). 

The overtaking that takes place between a shock and an expansion wave 
can be dealt with in a similar manner. The general feature of the interaction 
may be said to be that the shock and expansion wave are diminished through 
the process of overtaking; and eventually there remains only a shock or an 
expansion wave, whose strength is given by the difference of the strengths of 
the original waves. 

5. One-dimensional shock turbulence 
The results established in $02-4 may be summarized as follows. (i) If the 

disturbance field in a compressible fluid initially involves only weak shocks 
and expansion waves, it remains composed only of shocks and expansion waves 
at all times. (ii) The disturbance field is divided into two families, offorward- and 
backward-facing waves. Each family, consisting of shocks and expansion waves, 
is independently governed by the Burgers equation; and the influence of the 
other family appears only through the phase function in the argument. (iii) Con- 
sequently, the asymptotic form of a disturbance field of arbitrary initial form 
at very large Reynolds numbers and times is expressed as the sum of the asymp- 
totic forms of solutions of the Burgers equations corresponding to the forward- 
and backward-facing waves. 

Thus, if we are interested in the asymptotic behaviour of a random disturbance 
in a compressible fluid, or compression turbulence, at  very large Reynolds 
numbers and times, we need only investigate the corresponding behaviour of the 
solutions of the Burgers equation. The general solution of the Burgers equation 
(3.25) was given by Hopf (1950) and Cole (1951) as 

where 0 is the general solution of the heat-conduction equation 

a0 1 a 2 0  ---- = 0. 
ar 2pR 

It was shown by Tatsumi & Kida (1972), and independently by Burgers (1972, 
1973), that, for very large values of R and 7,  the solution of the Burgers equation 
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FIGURE 4. Sequence of triangular shock waves. 

(3.25), started from an arbitrary initial condition, tends asymptotically to a 
sequence of triangular shock waves:t 

at &(~,-~+x,)  < ti < +(x,+x,+l), n = 1,2,  ..., N .  In  (5.3) and (5.4), the suffix i 
has been omitted for x7s  and K’S ;  xn denotes the moving co-ordinate of the nth 
shock front and K, the stationary co-ordinate of the intersection of the straight 
line representing the expansion wave with the & axis as depicted in figure 4. 
Each triangular shock of (5.3) has strength 

1 
win = - (K,+1- Kn), 

7 

which decreases in time, and phase velocity 
1 

an = - r [x, - H K n  + K,+1)1, 

(5 .5 )  

which is readily shown to be constant in time. 
Since the velocities qfi of the shock fronts are in general not the same, 

overtaking of one shock by another takes place continuously and everywhere, 
unless the number density of shock fronts is too small. If we examine the asymp- 
totic behaviour of the solution of the Burgers equation, which eventually leads 
to (5.3), we find that the single shock that emerges from the overtaking of the 
(n+ 1)th shock by the nth shock is expressed by (5.3) and (5.4)) with the suffix 
n + 1 replaced by n + 2. Hence, in view of (5.5) and (5.6), the strength of the new 
shock is given by the sum of the strengths of the original shocks, 

1 
(5.7) - 

(K,+z-K~) = win +wi(n+l); 

For earlier works of Burgers related to this problem, see the footnote in $4.3.  There 
is another group of papers, dealing with Burgers model of turbulence for a channel flow 
by solving a set of model equations for the mean flow and the disturbances (Case & Chiu 
1969; Lee 1971 ; Murray 1973). Some of these also discuss the formation of triangular waves, 
and their coalescence in a channel. 
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and its phase velocity is given by the weighted mean of the original velocities, 

Burgers (1950) suggested that these relations of coalescence are more clearly 
understood by regarding each shock front as a particle of the mass win moving 
with the velocity Kn. Then the relations (5.7) and (5.8) are nothing but the well- 
known laws of conservation of the ‘mass’ win and the ‘momentum’ vinEn in 
a collision, which is in this case perfectly ‘inelastic’. 

Incidentally, the expression of Pi for a step shock is easily derived from that for 
a triangular shock (5.3) and (5.4) by taking the limit 7 --f co, K , + ~ - K ,  --f co, but 
keeping & - xn, vin and Kn finite. In  particular, the first expression of (4.11) is 
obtained as the limit of ( 5 . 3 )  for n = 1, the second by that for n = 2, and (4.12) 
by that for n = 1, with n + 1 replaced by n + 2. 

According to the properties of weak nonlinear waves (i)-(iii), summarized a t  
the beginning of this section, the forward- and backward-facing components of 
weak-shock turbulence behave independently of each other; and they are 
governed by the Burgers equation (3.25) so long as they are expressed in terms 
of the ti co-ordinates. Hence, their statistical properties also, when described 
in &, 7 space, are identical with those of the Burgers model of turbulence. 

The statistical mechanics of Burgers turbulence, represented by a train of 
triangular shock waves or a ‘gas of adhesive particles’, was investigated by 
Tatsumi & Kida (1972). The equations that govern the distribution functions 
of the strengths p, = K , + ~  - K, and the intervals A, = x,+~ - xn of shock fronts, 
were derived, and the self-preserving solutions were obtained. As a consequence, 
the turbulent energy was shown to decay in time as t2ta-l) (0  < 01 < 1), involving 
two important special cases t-8 and t-l, the latter of which is in fairly good agree- 
ment with the result of the numerical experiment of Crow & Canavan (1970). 

When we come to expressing the final results in the physical ( x , t )  space, 
however, we have to deal with the phase functions $i, which are included in the 
transformation & = e(x-rit -bi). Nevertheless, it will be shown below that $i 
can be neglected even in x, t space, as far as the quantities expressed as space 
averages are concerned. 

When the forward- and backward-facing components of turbulence take the 
form of a train of triangular shocks ( 5 . 3 ) )  the phase functions (3.27) are written as 

I 

for 



600 T .  Tatsumi and H .  Tokunaga 

For extremely large Reynolds numbers and times such that 1 < 7 << R, (5.9) 
is reduced to 

I 

for & ( X n - l + X d  Ei < Q(xn+xn+J* 
The order of magnitude of q5i specified by (5.9) or (5.10) may be estimated as 

follows. The lengths (K,+~ - K ~ )  and [A, - &(K, + K ~ + ~ ) ] ,  which are all finite in the 
& co-ordinates, are O(E),  according to (3.10). On the other hand, the velocities 
vin and 6, are O(l) ,  in view of the relation (4.5). Then, it follows from (5.5) 
and (5 .6 )  that 7 = O(s) ,  so that t = O(s-l), from (3.10). The above estimation of 
order of magnitude of terms in (5.9) or (5.10) shows that the q5( are O(s). Hence, 

- E 1 - 2  =c+O(s2) .  a& 
-- ax ( E) (5.11) 

If we assume spatial periodicity of the turbulent field with length scale L, 
and require the vanishing space average of fluctuating quantities at an initial 
instant 

then it follows from (4.1) that the I$ are also periodic, and 

(5.12) 

where (5.11) has been taken into account, with O ( G )  neglected. Since the 4 are 
solutions of (3.25), it  is readily shown that the periodicity and the vanishing of 
the space average of F,, 

(5.13) 

hold at  all times 7 > 0. 

J; I$(‘& 7) a5 = 0, 

The kinetic energy of turbulence per unit length is defined by 

(5.14) 

In  the weak-shock approximation, (5.14) becomes 

(5.16) 
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where the independence of the two components Fl and F2 has been assumed 
besides the condition (5.13). Since the energies €l(t)  and eY2(t) change in time 
according to the energy decay law of Burgers turbulence, the total kinetic 
energy &(t) must also decay in the same manner. 

The same argument can be applied to correlations, energy spectra and other 
statistical quantities, so long as they are expressed in terms of integrals in 
space; and it may be concluded that the general statistical behaviour of 
weak-shock turbulence in a compressible fluid is identical with that of the 
Burgers model of turbulence. 
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